

Shield Design Cost Matters

PTCOG 59 (2021)

Meissner Consulting GmbH Prof.-Messerschmitt-Str. 3 D-85579 Neubiberg (München) phone +49 89 30765220 email meissner@meissner-consulting.com

- As Low As Reasonable Achievable
- Reasonable vs Conservative Assumptions
- Reasonable target limits
 - ensure compliance with <u>effective</u> dose limits (e.g. IAEA 1mSv/a, Norway 0.25mSv/a)
 - Apply a risk based approach: who, how often, control
 - Beam on vs Beam off time: Find agreement with regulator on dose <u>rate</u> limits (µSv/h)
 i.e. how to measure Dose rate

Examples

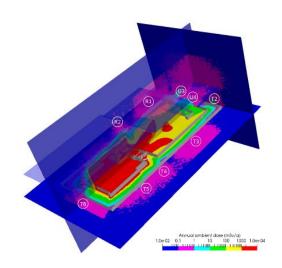
USA/Thailand: 20µSv in any one hour

Germany: 20µSv per week; but < 3mSv/h IDR

China: 2.5 μSv per hour IDR – <u>instantaneous!</u>

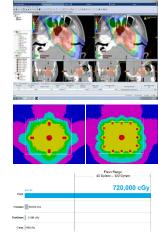
UK: 7.5µSv per hour IDR; averaged over 1min by ACOP
Singapore: 10µSv per hour IDR "outside the X-ray room"

India 1µSv/h; AERB has relaxed this in specific cases

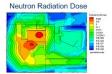

PTCOG 59 - © 2021 Meissner Consulting GmbH

KPI: Time to regulatory permit issue

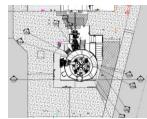
- Time spend in coordination with the regulator always saves time to permit issue.
 - Propose solutions do not ask open question
 - Agree on target limits
 - Workload, futurization
 - Dose rate
 - Propose your method and ensure comfort level
 - Monte Carlo vs line-of-sight
 - National and Int's standards
 - Benchmarking
 - Pretty pictures count more than 1000 words

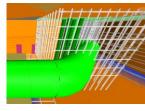


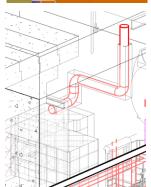
Workload now and in the future


KPI: Reasonable Work-Load

- We are treating a mix of patients not all at E_{max}
- Today's expectation vs Future
 - Changes in patient mix and number due to referral system?
 - FLASH, proton arc, other new methods
- Document cases considered for robustness
- Evaluate uncertainties and effects on protected locations




Site and construction cost


Define cost relevant Indicators for the specific project (1)

- Hard footprint constraints?
 - Use special shielding materials only where really necessary
 - Shielding door vs access maze
- Calculate shielding with locally available concrete
 - Density needs to be specified, but deviations from the usual 2.35 t/m³ are possible, and may reduce cost
- Moving structural items (i.e. rebar) is more expensive than a different ventilation routing.
- Smart duct planning may save a bend or concrete thickness
- Complex geometries vs straight walls
- Construction joints & pre-fab elements

Define cost relevant Indicators for the specific project (2)

- Construction delays due to conflicts of embedded objects with ducts
 - Ensure shielding consultant is available for Q&A during construction
- Just-in-time results of shielding calculations
 - Schematic Design phase: vault on site, integrated in clinic, maze vs shielding door
 - Decommissioning cost at end-of-life: reduction of cost or financial securities required
 - Design Development phase (e.g. with ducts, penetrations, etc)
- Impact of Radiation Safety topics on Time-to-1st patient
 - Ensure collaboration with regulator
 - Permit needed prior to construction?
 - Setup radiation safety program in time for building occupancy
 - Adequate # of RSO on board
 - RAM license to receive equipment
 - Operating permit to start-up

Some Key Performance Indicators (KPI)

- Reasonable target limits: e.g. FLASH dose rates; duty cycle; risk based
- Robustness: chosen workload-scenario vs future
- Duct location and routing: impact on
 - Structural elements, such as re-bar
 - Wall thickness
 - Comparison to duct material and installation cost
- Construction Cost: KIP comparison for
 - Concrete volume vs formwork, rebar
 - = complex vs standard shape
- Just-in-time for all radiation relevant services

Thank You!