

Radiation Shielding

PTCOG 58 – Manchester, UK (2019)

Meissner Consulting GmbH Prof.-Messerschmitt-Str. 3 D-85579 Neubiberg (München) phone +49 89 30765220 email <u>meissner@meissner-consulting.com</u>

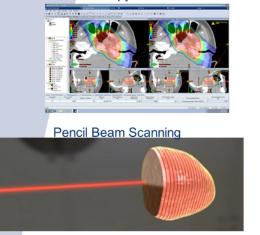
MEISSNER CONSULTING

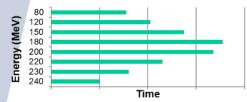
Disclosures

This work is not funded by third parties with a commercial interest in the topic.

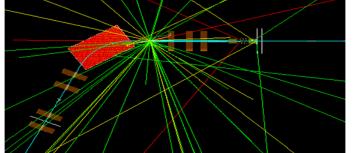
Meissner Consulting has shielding design contracts with Varian Medical Systems, Health Care Global and University of Pennsylvania, and other HP.

Learning Objectives

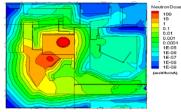

- Basic understanding of Neutron Physics as it is affected by
 - Energy, Incident Angle, Target and Shielding Material
- How to use Workload data effectively and conservatively
- Regulatory Overview
 - Regulatory Limits vs Design Criteria
 - Understand why Shielding Calculations are Facility Specific
- Available Calculation Methods and Benchmarking, with some how-to guidelines
- Effects of FLASH and Proton Arc on shielding


Big Picture Goals

Proton Therapy Treatment Plan

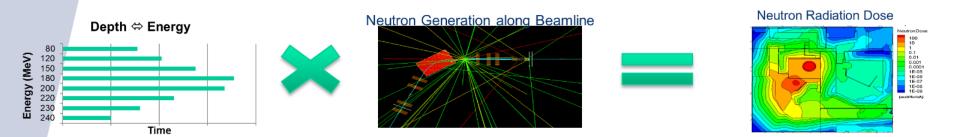


Depth 🗢 Energy



Big Picture Goals

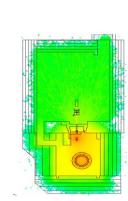
Neutron Generation along Beamline


Neutron Radiation Dose

Courtesy: Varian Medical Systems

Big Picture Goals

Courtesy: Varian Medical Systems


Future Proofing and Margins

- Quality Assurance
 - Daily, weekly, quarterly checks
 - Treatment plan verifications
- Change of patient capacity
 - More efficient treatment
 - Operating hour extension
- Robustness
 - change in patient population on E vs proton loss, and then on annual dose
- Service processes
- New treatment methods or R&D

Ideal Shielding Design Process

Input: Revit™ 3D model Source Terms Clinical Use Case

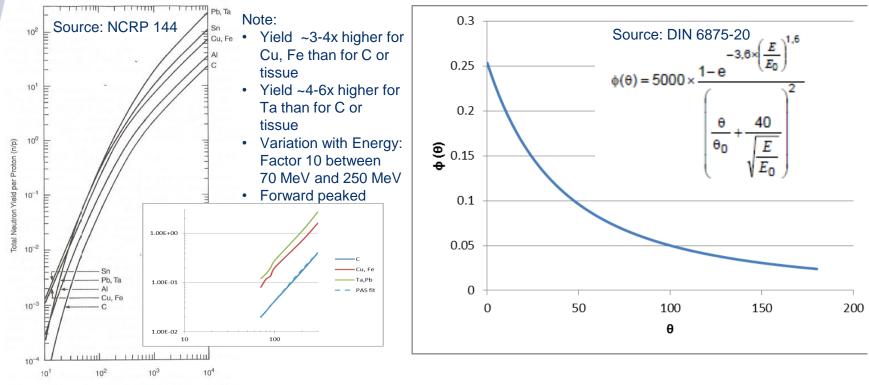
Shield Optimization

Output: Revit™ 3D model Safe Shield Report

Fast

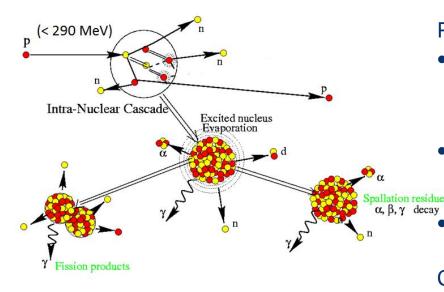
- No Misunderstandings about Shield-Geometry
- Validate Shield Penetrations (Ventilation etc)

Some Physics Background


Radiation Production Processes

Protons interact with material...

- inside the accelerator,
- Energy selection system and beamline,
- Beam shaping at the patient: range shifters, collimators, modulators
 - PBS nozzles typically do not use these devices
- patient, phantom
- ...and create secondary radiation
 - Neutrons, charged particles, protons, gamma only if the machine is on.
 - Activation remains when the machine is off (gamma and beta)
- Radiation shielding is concentrating on neutrons



Neutron Yield (E_p , θ ,material)

Proton Energy [Ep (MeV)]

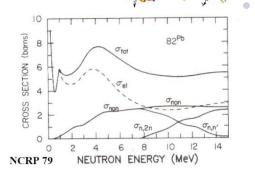
Radiation Production Processes

Proton hits target Nucleus

- Intra-Nuclear Cascade (INC)
 - Cascade of reactions within nucleus
 - Large fraction of E transferred to few nucleons
 - Forward peaked nucleon emissions, new INC
- Evaporation of Nucleons and Fragments
 - Isotropic emissions (n, α , d, γ)
- Activation and decay

Charged particles are quickly stopped→ neutrons, gamma

Source: modified from irfu.cea.fr



Attenuation Processes in the shield

Shielding Wall

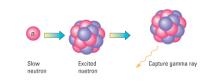
Relativistic and Fast Neutrons

- >> 20 MeV
- Cascades
- Spallation (n,2n)
- Evaporation
- activation

Inelastic Scattering

Dominant 10 MeV < E < 50 MeV Neutron kinetic energy is lost in collision to excite nucleus

Gamma ray High Z materials

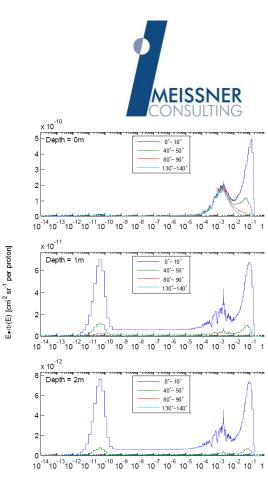

Elastic Scattering

- Dominant < 1 MeV for concrete and PE; < 10 MeV for other materials
- Neutron kinetic energy lost is transferred to nucleus
 - Hydrogenous materials best

Neutron Capture

- 0.025 eV to ~ keV
- Thermal absorption
- Resonant absorption

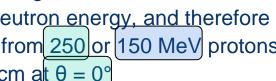
- Emission of gamma ray
 - Good materials: Hydrogen (2.2 MeV) Boron (0.478 MeV)

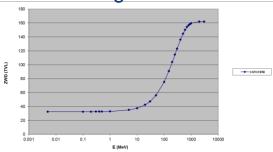


Source: http://www.glossary.oilfield.slb.com/Terms PTCOG 58 - © 2019 Meissner Consulting GmbH

Neutron Field

Direct neutrons, cascade neutrons


- Typ > 20 MeV, up to incident p-Energy
- lower energy neutrons continuously generated in shield
- Forward focused
- Evaporated neutrons:
 - 1-10 MeV, peak 1-2 MeV, isotropic
 - Elastic and inelastic scattering
- Few thermal Neutrons in unshielded field
- After shielding, dominantly thermal, 2 MeV and 100 MeV peaks



Neutron Energy [GeV] Source: Rong-Jiun Shu, RADSYNCH2013

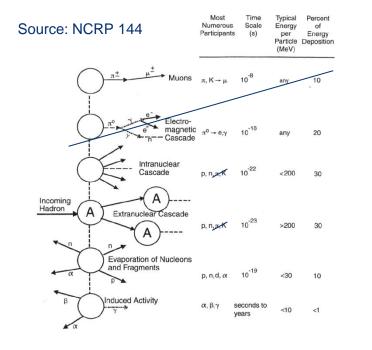
Effect of Shielding

- Shielding of neutrons "attenuates"
- Exponential attenuation curve
- Half-value (HVL) or tenth-value layer (TVL)
 - Each TVL of shielding material reduces the dose by 1/10
 - TVL depend on neutron energy, and therefore on E_p and θ
 - TVL for neutrons from 250 or 150 MeV protons in concrete ranges from^{*}
 - 114cm or 91cm at $\theta = 0^{\circ}$
 - 83 cm or 66cm at θ ~ 45° 90°
 - 56 cm or <u>45cm at θ ~ 90°</u> 135°
 - 43 cm or 35cm at θ > 135°

220

iose / dose rate

safe wall thickness based on limit


Wall thickness d (cm)

* Source: DIN 6875-20

Summary of Physics

 $Y(E_p, \theta, material); TVL(E_p, \theta)$

- High Energy Neutrons
 - 100 MeV, 2 MeV

Good shielding Materials:

- Concrete
- sandwich of high-Z with concrete
- High density
- Not suitable for shielding:
 - PE (except maybe at the end of mazes)
 - high-Z without hydrogenous layer following

Regulatory Overview

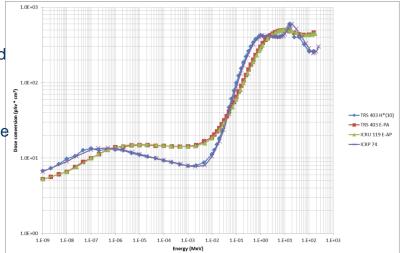
Regulated: Effective Dose *E*

- tissue-weighted sum of the <u>equivalent</u> <u>doses</u> in all specified tissues and organs of the human body
- Effective Dose *E* cannot be measured, cannot be used as quantity for radiation monitoring
- Operational Quantity H*(10) is used for assessing E
- Ambient dose *H*(10)* vs Effective Person dose
 - Occupancy factors T

NCRP REPORT	No. 151
occupancy factor (T): Location	Occupancy Factor (T)
Full occupancy areas (areas occupied full-time by an individual), e.g., administrative or clerical offices; treatment planning areas, treatment control rooms, nurse stations, receptionist areas, attended waiting rooms, occupied space in nearby building	1
Adjacent treatment room, patient examination room adjacent to shielded vault	1/2
Corridors, employee lounges, staff rest rooms	1/5
Treatment vault doors ^b	1/8
Public toilets, unattended vending rooms, storage areas, outdoor areas with seating, unattended waiting rooms, patient holding areas, attics, janitors' elosets	1/20
Outdoor areas with only transient pedestrian or vehicular traffic, unattended parking lots, vehicular drop off areas (unattended), stairways, unattended elevators	1/40

Ambient Dose equivalent H*(10)

Defined as


- simulates the human body through a phantom (the ICRU sphere, a sphere of 300 mm in diameter made of tissue equivalent material)
- H*(10) is the dose equivalent at a depth of 10 mm inside that sphere
- Considers the quality factor Q for the type of radiation
- Used for strong penetrating radiation

Used for

- Operational quantity: Monitored quantity, measured by radiological protection instruments.
- Used for Effective Dose E
- for neutron fields in proton therapy, requires special instruments with large neutron energy range

Use how

- Convert from neutron fluence, common practice to use ICRP 74
- Used by standards such as DIN, NCRP, GBZ
- Measure with Instruments

Effective Dose Limit

- Annual or weekly limits, dose rate limits
- Per person not per facility
- IAEA and in most countries Annual Dose Limit [E ~ T H*(10)]
 - Members of the public: 1mSv/a
- BUT for a facility
 - Denmark and Belgium enforce 0.3 mSv/a
 - Sweden is very sensitive on childcare facilities 0.1mSv/a?
 - Italy: 10µSv per year
 - Often the limit the regulatory body requires is not written explicitly in the regulations!
 - Occupancy Factors (range T=0.1 to 1.0)

Dose Rate

Definitions

- Technically, all dose limits are time averaged dose rates (TADR) like "mSv per year"; the shorter the averaging period the more complex.
- IDR (instantaneous dose rate) introduced by some countries, without really specifying the "instant" or measurement technique.

Examples

- IAEA:
- USA/Thailand:
- Germany:
- China:
- UK:
- Singapore:

advice that there may be some countries that regulate TADR for short intervals or IDR.

- 20µSv in any one hour
- 20µSv per week; but < 3mSv/h IDR
 - 2.5 µSv per hour IDR instantaneous!
 - $7.5 \mu Sv$ per hour IDR; averaged over 1min by ACOP
 - 10µSv per hour IDR "outside the X-ray room"

Mitigating IDR

Example

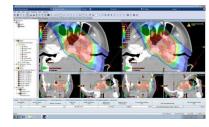
- Typical field application time ~1-2min, PBS, going through all energy layers.
 - Largest annual dose contribution comes form the energy range 130-160 MeV
 - Highest dose rate is reached at distal edge of deep lying tumor irradiations; 30-60s?
 - Measurement: specialized equipment, like a Wendi II with tungsten core. Today's detectors need about 1 minute to see enough counts to provide a reliable measurement result – outside the shield

Mitigation by negotiation with the regulatory body.

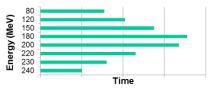
- Choice of averaging time for IDR 1 or 2 min?
- Locations where the requirements have to be met
 - also inside each adjacent room?
 - Only in public areas?

Calculation Methods

Vendor's Source terms

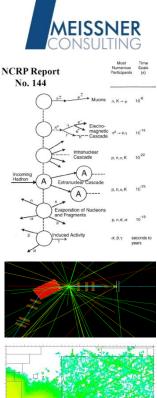


- Very different from the X-ray world!
- Instead of dose rate
 - Proton losses / Beamline transmission
 - Materials
 - Equipment geometry
- PBS vs Passive Scattering
 - Typ difference in proton losses: factor 5-10


Clinical Use Model

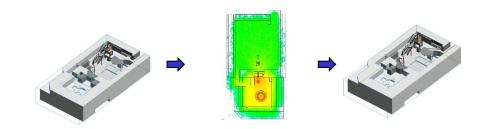
- User Input
 - Number of patient p.a.
 - Tumor sites and frequency
 - Treatment plans
- Converted to Protons lost at each
 - Location
 - Energy
 - → Neutron Yield

Site	% GA	% with Range shifter	Imaging Procedu re	% of fractions for CBCT	Average No. fields	Total no. of patients	% of total treatments	total no. =	Average tumour volume (cc)	Fraction dose (CGE)	total dose (CGE)
Brain		70	kV daily	25	2	400	33	30	315	1.8	50-54
Paeds Brain	30				2-3	95		30	508	1.8	54
H&N		80	kV daily	25	3	410	30	32	567	2.0	70
Paeds H&N	30				3-4	40		33	275	1.8	66
Pelvic		50	kV daily	daily 100	2-3	193	14		1549	2.0	50-66
Paeds Pelvis	30				3	17		20- 30		1.5-1.8	30-54
Whole CNS		80	kV daily	kV daily 25	4	45	9	30	2376	1.8	54(24 36Gy whole CNS)
Whole CNS Paeds	30				3-4	90		30	1922	1.6-1.8	54(24 36Gy whole CNS)
Thorax		100	kV daily	100	2	44	4	30	821	2	50-66
Paeds Thorax	30				3	16		30		1.5-1.8	20-54
Abdomen		100	kV daily 10	100	3-4	112	10	30	880	2	50-66
Paeds Abdomen	30	100			3-4	38		30		1.5-1.8	20-54

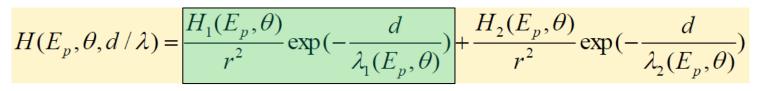

Depth ⇔ Energy

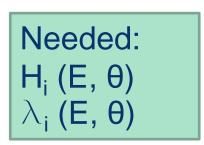
Courtesy: Varian Medical Systems

Monte Carlo Explained


- Each particle is tracked until a defined cutoff
- Each interaction is recorded, secondary particles are tracked.
- Physics cross sections available for all elements.
- Materials are defined as mass ratios of elements.
- Quick math: 1p → 0.1 n; attenuation 10⁻⁶; for ^{√N}/_N=10%, N=100 neutrons at protected locations
 → 10⁹ protons to be simulated
- Biasing methods can reduce calculation time, increase need for benchmarking
 - → 10⁶ to 10⁸ protons (still CPU days)

Monte Carlo Applied


- Step 1:
 - Geometry Modelling can be time intensive
 - Proton loss definition (→ Neutron Yield)
- Step 2:
 - Biasing (geometry, weight factors, ...)
 - Simulation of Source particles CPU time intensive
- Step 3
 - Pretty up the output
 - Communicate output
- Benchmarking


Analytical Explained

Point-Source line-of-sight model

- Source term and attenuation length (TVL)
 - H_i from NCRP 144 or other
 - choose energy bins and angles
 - Target materials
 - Shielding materials

Source: Rong-Jiun Shu, RADSYNCH2013

Maze Calculations

421E-10 854E-10

420E-08

.438E-09

326E-0

882E-0

182E-0

2.8625.0

6.011E-07

1.678E-06

4.054E-06 9.842E-06

2.383E-05

5.771E-05

1.397E-04 3.384E-04

8.194E-04 1.984E-03 4.804E-03

1.163E-02 2.817E-02 6.822E-02

1.652E-01

0005-01

a 0.01

1E-3

1E-4

1E-5

A 1E-6

1E-7

10

100

100

200

200

300

300

Center-Line Distance from Maze Mouth (cm)

Ambi

airt/MCNPX)

Ratio (Co

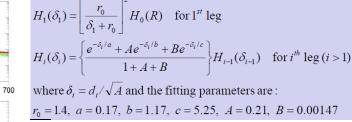
0.

Comparison of MCNPX and Cossairt's formula (FermiLab TM-1834, 2016)

400

400

MCNPX ---- Cossairt


500

500

600

600

700

400

300

200

100

0

-100

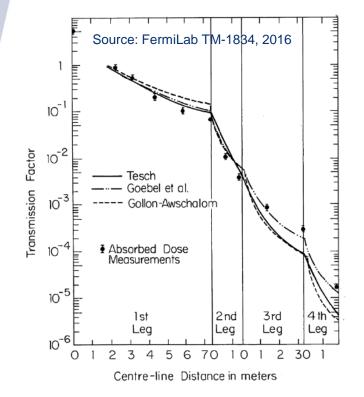
-200

-300

-400

-400 -300

-200 -100


0 100 200 300 400

X [cm]

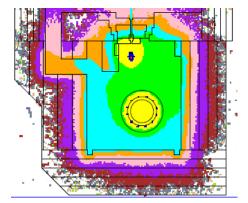
Y [cm]

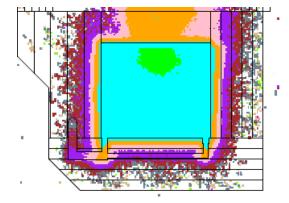
Maze Calculations

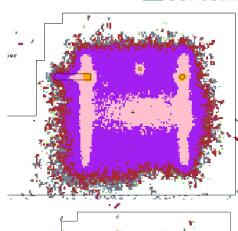
Maze Basics:

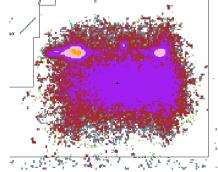
- Avoid direct beam at maze mouth
- Leg # more important than length
- Several approaches in literature, benchmarked for experimental cases
- Dominated by thermal or near thermal neutrons after first leg
 - First leg has least effect

Refer to Literature Sources

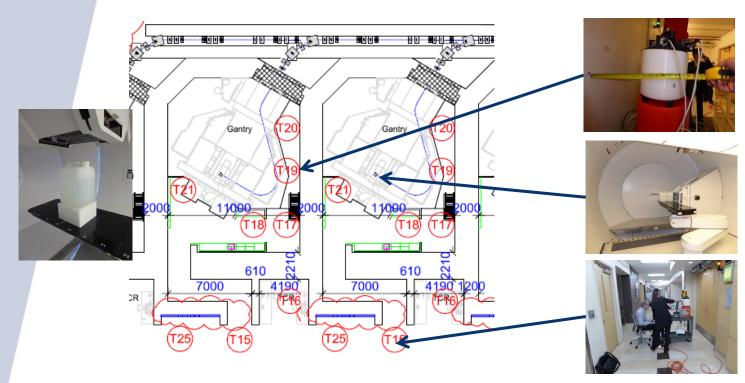

- FermiLab TM-1834, 2016
- NCRP 144
- DIN PAS 1078

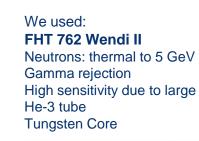

PTCOG 58 - © 2019 Meissner Consulting GmbH

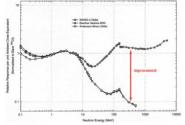

Maze Calculations



Ventilation Ducts are Mazes






Benchmarking

Benchmarking any Calculation

MEISSNER

Benchmarking Monte Carlo

Physics Models

- Spallation
- INC
- Fission-evaporation
- light ion interactions
- Choice?

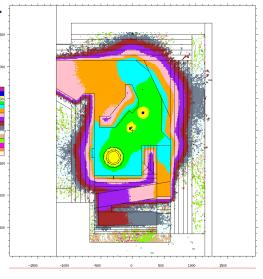
Energy [GeV or GeV/u] Particle type* (Intranuclear Cascade) 1Te\ Evaporation/Fission 0.8 0.94 3.5 FLUKA 1† Bertini 11 Dresner-RAL (or LAQGSM) FLUKA 2 ISABEL (or LAQGSM) Nucleons 2 **Dresner-ORNL** (neutron, proton) FLUKA INCL4 [‡] 3 (or LAQGSM) FLUKA 3 ABLA CEM03 5 4 (or LAQGSM) 1† ISABEL LAQGSM Light ions * Exclude Pions Photon (deuteron, triton, † Default option of the MCNPX 2.7.0 ³H.alpha) 2 LAQGSM 5 Occur the error when you set the heavy ions as your primary incident Heavy ions LAQGSM 5 particle. (A > 4)[§] Use own evaporation model

Fig. 1. Physics models in MCNPX 2.7.0.

Source: (*)

- Become a theoretical nuclear physicist, or look at literature:
- (*)ARIM LEE et al.: COMPARISON OF PHYSICS MODEL FOR 600-MEV PROTONS, Journal of Radiation Protection and Research (2016)
- MCNP6[™] USER'S MANUAL

Benchmarking Monte Carlo


	Some concrete	Portland Concrete (NIST)	ρ= 2.35g/		CONSOLITING
Hotspot				Some concrete	Portland Concrete (NIST)
CEM03.03			CEM03.03	17.6	14.9
	Test 00	01 Test 003	Bertini / RAL / ISABEL	26.7	23.4
Bertini / RAL / ISABEL			Measured Value		5.7
					Maze exit
			CEM03.03		0.89
	Test 00.	2 Test 004	Measured Value		0.1

Benchmarking

Material

- Concrete ≠ concrete
- Density and Elemental Composition = TVL
- Source
 - How to model a cyclotron?
 - How to model the beam loss positions?
 - How to simplify and remain conservative

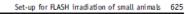
FLASH

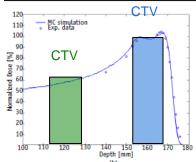
FLASH with Protons

- Shielding Challenge
 - Understanding Source Terms
 - Understanding Workload
- Very high dose rate at ISOC
 - High extracted current
 - Low beamline losses
 - High currents in the Nozzle (> 40Gy/s)
 - Very short beam-on (< 1s)

Source: IBA Press Release 08 Mar 2019

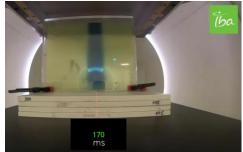
Cyclotron Current 1.2µA


University Medical Centre Groningen IBA Site at UMCG IBA Research & Development IBA Innovation Laboratory


FLASH with Protons

Reportedly, FLASH dose rates are less toxic to normal tissue

- High dose rate pulses 40-200 Gy/s, < 1s
- Reduced toxicity:
 - Irradiated Volume accuracy not as critical?
 - Bragg Peak or Transmission?
 - Hypo Fractionation, maybe single dose?
- Technology
 - Very fast energy variation, typically close to the patient
 - High energy beam in treatment room
 - At least in the beginning, small volumes
- R&D: clinical and technology

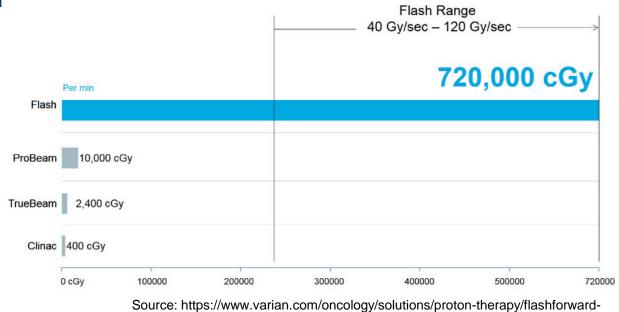


FLASH with Protons (IBA)

- Demo at Groningen
- Taking a closer look at the Press Release (08 Mar 2019)
- For Research

Source: IBA Press Release 08 Mar 2019

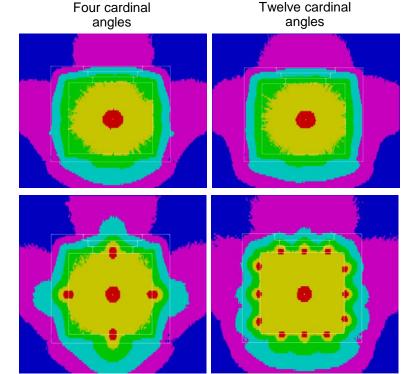
FLASH IRRADIATION IN A GANTRY Cube 2x2x2 [cm3]



ISOC Current: 22.5nA for 170ms

FLASH with Protons (Varian)

- Flash Forward Consortium
- For Research

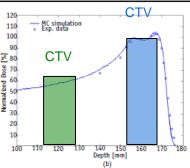


PTCOG 58 - © 2019 Meissner Consulting GmbH consortium

FLASH with Proton Arc

- Traditional PT: 2-3 fields
- Arc: many fields during rotation
- Bragg Peak method
- Transmission Method (Bragg Peak outside patient)

Gantry Room Sections through the ISOC; Rotation Plane


Effect on Annual Dose

Treatment Room Considerations

- Hypo Fractionation
 - To the extreme of applying full dose in one session
 - Theoretical capacity increase x 20?
- Fraction of Patients treated with Flash?
- Bragg Peak or Transmission Method
 - where is the beam stopped? patient, beam-stop, wall?
 - Maybe 2-3x more protons needed for the same CTV dose in transmission method?
 - (Near) full energy into the treatment room Most neutrons generated at E_{max}?
- ➔ Radiation source location
- ➔ Workload per year
- → Instantaneous Dose Rate regulation dependent

Source of inset: Int J Radiation Oncol Biol Phys, Vol. 102, No. 3, 2018

Mitigating IDR for FLASH

Example

- Typical field application time < 1s, max E at nozzle entrance.
 - ~100-200 Gy/s at the tumor,
 - IDR even higher where the beam is stopped if using the transmission method.
 - Measurement: are there neutron monitors that can measure this fast?

Mitigation by negotiation with the regulatory body.

- Safety criteria is dose, not by IDR. Not all regulations reflect that.
- Choice of averaging time for IDR 1 or 2 min, any one hour, dose per week?
- Locations where the requirements have to be met
 - also inside adjacent gantry room?
 - Only in public areas?

Learning Objectives

- Neutron Physics and Concept of Attenuation Lengths (=HVL/TVL) and their Dependence on:
 - Energy, observing Angle, Target and Shielding Material, Density
- Shielding Calculations need to Facility specific
 - Regulatory Limits vs. Design Criteria
 - Occupancy, Assumptions on Operating Parameters
- Principles of Monte Carlo Simulations, Point-Kernel Calculation Methods, and the <u>Necessity</u> for Benchmarking.
 - Shield Barrier Transmission Attenuation
 - Maze Attenuation
- The shield can change for FLASH but there is a lot of guesswork involved for future developments

How-To: Shielding Materials

Beam

- Iron fast neutrons only
- High Density Concrete mainly fast neutrons
 - Up to 5 kg/dm³
- Standard Concrete
 - Typ 2.35 kg/dm³
- Earth
- Sandwich order: Iron/HD must be followed by hydrogenous material.
- Bound water content 3%-5% typ. in concrete

How-To: Ventilation - Guidelines for A&E team

- Each duct is a maze:
 - minimize cross section,
 - \geq 2, often 3 legs
 - 1st leg is least effective can be short
 - Opening not in forward beam direction
 - Avoid beamline height openings
 - Back of gantry rooms
- Avoid Duct run in line-of-sight direction from radiation source
- Avoid Duct with too little concrete coverage
- Verify individually by shielding consultant

How-To: Conduits - Guidelines for A&E team

- Keep parallel conduit separated by ~3-4x diameter
- Conduit run not in line-of-sight direction from radiation sources
- Min 2 bends, max 4 bends (NEC), typical 2-3 bends

Thank You!